

LONG RANGE IOT : OVERVIEW

Stéphanie Riché Partnership manager CEA Tech leti

MAIN USE-CASES & KEY REQUIREMENTS

SIGFOX, LORA, LTE-M & NB-IoT

5G

R&D CHALLENGES

IOT WIRELESS LANDSCAPE

leti

Ceatech

1) Taux de croissance annuel moyen

 Le terme « objet connecté » inclut tout objet autonome (chaque analyste a sa définition), sont exclus les portables, téléphones mobiles et tablettes.

Sources : Cisco, Ericsson, ABI Research, Gartner, IHS, IDC, Harbor Research, IoT-Analytics.com

MAIN USE-CASES & KEY REQUIREMENTS

Louis Vuitton Echo, service launched in April 2018

Key requirements :

- Low power
 - Current autonomy : 6 months
- Worldwide indoor/outdoor coverage
 - Current coverage : 120 airports
- Indoor/outdoor localization

USE-CASE : SMART CITIES

Morphosense predictive maintenance service launched in 2016

Key requirements :

- Reliability
- Service dependent data rate
- Worldwide coverage

USE-CASE : CONNECTED MOBILITY

From traffic monitoring to road safety & autonomous vehicle use-cases

Key requirements :

- Low latency
- Ultra Reliability
- Ad-hoc network support
- Interoperability
- Precise Localization

11/07/18: 5GAA, BMW Group, Ford and Groupe PSA Exhibit First European Demonstration of C-V2X Direct Communication Interoperability Between Multiple Automakers

leti IoT wireless connectivity key requirements

SIGFOX, LORA, LTE-M, NB-IOT

Sigfox, French startup created in 2009

- Deploy and operate a long range radio network
- July 2018 : 3 millions objects connected, December 2018 : 6,2 millions
- Chip provider : STM, NXP, CGT, Microchip....

Å

SIGFOX protocol stack is proprietary, provided free of charge to modem manufacturers

SIGFOX

FREQUENCY BAND	Unlicensed ISM Bands 868 Mhz (Europe), 915MhZ (USA), 433MHz (Asia)
BANDWIDTH	200 kHz UNB (one message on 100 Hz)
DATA RATE	100bit/s to 600bit/s
RANGE	- 30 to 50km rural areas- 3 to 10 km urban areas
MOBILITY/ LOCALISATION	Mobility RSSI

Lora : technology developed by French startup
 Cycleo acquired in 2012 by SEMTECH

- Lora Alliance : industrial ecosystem which promotes LoRa technology & LoraWan protocol Founding members include Actility, Cisco, Eolane, IBM, Kerlink, IMST, MultiTech, Sagemcom, Semtech, Microchip Technology, Bouygues Telecom, KPN, SingTel, Proximus, Swisscom, and FastNet
- **Operational model: public or private** Expectation : 80% public
- Chip provider : Semtech, announces 80millions lora enabled nodes early 2019

LORA protocol stack

	LORA
FREQUENCY BAND	Unlicensed ISM Bands 868 Mhz (Europe), 915MhZ (USA), 433MHz (Asia)
BANDWIDTH	125 kHz/250kHz
DATA RATE	300bit/s to 50kbit/s
RANGE	< 15km rural areas2 to 5km urban areas
MOBILITY / LOCALISATION	Conditioned by roaming agreement TDoA

- Two technology under the same 3GPP standard : release 13 / LTE Advanced Pro
- Early push from Verizon, Deutsche Telekom and Vodafone
- Deployment :
 - In February 2019, the GSMA indicates that Mobile IoT is available in more than 50 countries.
 - China:
 - China Mobile has launched NB-IoT in 346 cities using chipsets from five companies.
 - Ministry of Industry and Information Technology MIIT's targets
 - End of 2017 : all major cities in China, 400K BSs, 20M connections
 - 2020: nationwide coverage, 1,5M BSs, 600M connections
- Worldwide coverage technical challenge for NB-IoT
- Chip providers : about 15 companies announced chip development: Qualcomm, Sierra Wireless, Sequans, GCT Semiconductor, ublox...

16/10/18 : MICHELIN, SOFTBANK ET ADLINK DÉPLOIENT UNE SOLUTION IOT AU JAPON

02/19: CHINA MOBILE ANNOUNCES 3 MILLION EBIKE CONNECTED IN ZHENGZHOU TO REDUCE THEFTS AND ACCIDENTS

	LTE-M	NB-IoT
NAMES	eMTC Cat-M1 / LTE-M release 13	NB-IoT Cat-NB1 / NB-LTE release 13
FREQUENCY BAND	Licensed (700 – 900MHz)	Licensed LTE Band
BANDWIDTH	1,4 MHz	200kHz
DATA RATE	<1 Mbits/s	<150kbits/s
RANGE	NA	NA
MOBILITY/LOCALISATION	Mobility	No (Mobility in release 14)
	 ✓ Optimized for voice & browser I/F IoT 	✓ Optimized for massive IoT
	 Compatible with the existing LTE network (software upgrade only) 	- Require an infrastructure upgrade

DEPLOYEMENT (JULY18)

leti

DEPLOYEMENT Q3 2019

LetiDEPLOYMENT:GLOBAL SATELLITE NETWORKS ANNOUNCED!

Iridium in collaboration with Amazon Web Services on CloudNet project announce an IoT satellite connectivity in 2021 Other initiatives : Eutelsat, SpaceX,...

1 (SR)

100

11

11

10

- E

5G

1.

. .

1 SG NETWORKS : NEW FEATURES

 4G+
 LPWA+
 5G NR

 Image: Constraint of the second se

Massive IoT

Ubiquitous mobile high-speed internet

Mass market

Accelerate deployment

Low-cost connectivity High density Low latency Ultra reliable

Critical missions

base-stations

=

1000x

Capacity

R13

>R15

R&D CHALLENGES

. .

.

IOT POWER CONSUMPTION STANDARD ANALYSIS

LPWA : TOWARDS ULTRA LOW POWER NODES

leti

Ceatech

ULP RF SoC transceiver for Ultra-Narrow Band (UNB) applications - FOXY

- Sub-GHz ISM Frequency Bands
- Low Data Rate / Narrow-Band receiver 100 bps to 1 kbps
- Low-Power RX target : 10 mW / Very High sensitivity at -136 dBm
- Low-Power TX target : 5 mW/0 dBm Integration of a +14dBm/33mA PA
- Low-Cost target for very high volume applications
- Very low leakage current target for very long battery life
- Technology : TSMC 65 nm

Functionalities

- Ready to use IC : integrated digital process / application features
- Fully compatible with Sigfox protocol World Wide
- Last version ready for industrialization phase

WAKE-UP – ALWAYS-ON RECEIVER

leti

Ceatech

Snapshot of the full Wake-Up RX

Multi band capability

• 868-915 MHz / 1.4 GHz / 2.4 GHz

Adaptive power consumption

- Event-driven activity
- Target to burn ~ 50 µW in active mode
- Analog front-end to demodulation : 20 μW
- Synthesizer and LO : 30 µW

NEW WAVEFORM APPROACH FOR IoT

- Goal : Address with one system a variety of scenario
- Approach

leti

Ceatech

- Channel bonding : ability to aggregate noncontiguous communication channels to deliver higher data rate : 3 Mbit/s and longer range
- Flexible waveform design
 - Turbo FSK
 - SC-FDM
 - OFDM
- Self-adaptation to context at MAC level

Leti 5G NR FIELD TRIALS IN GRENOBLE

Multi-service transmission 3,5GHz band

Ultra Reliable Low Latency Latency 0,25ms + NB-IoT

Other investigations:

- Mobile Broad Band
- Full-duplex radio

Source: Eu project 5GChampion

- Satellite & mmWave Positioning

LOCALIZATION FOR LONG RANGE IOT RADIOS

 How to perform precise localization with LPWA system limitations ?

Low data rate + long range

- => low bandwidth
- = >low temporal resolution
- Approach

leti

Ceatech

- Benchmark and/or combination of various location-dependent radio metrics (e.g., Time Difference of Arrival, Received power, Phase Difference of Arrival)
- Evaluate pragmatic approach and associated performance limits for IoT narrowband system (LPWA or 3GPP NB-IoT)
- Overall system design and optimal synchronization/deployment schemes accordingly
- Target : Increase by 10 the precision of localization by improving ranging metrics

AI-BASED LOCALISATION FOR DENSE LPWA NETWORKS

(1) Offline participatory construction of (multi-parameter) radio maps

leti

Ceatech

(2) On-line localization (~ Advanced fingerprinting)

COMPACT & EFFICIENT ANTENNAS

- Antennas & Antennas systems
 - Radiating sources (10 MHz to 300 GHz)
 - Multi-antennas and arrays
 - Reconfigurable antennas
- Antenna Context influence
 - Modeling

leti

Ceatech

- Characterization
- Emulation

Miniature antenna @ 2.4 GHz

Miniature antenna @ ISM 433 MHz

31dBi at 57-77GHz for backhaul/fronthaul point to point transmission at 20gbit/s

From channel characterization to system performance evaluation

OTA test